A Fast Semi-Implicit Finite Difference Method for the TDGL Equations
نویسنده
چکیده
We propose a finite-difference algorithm for solving the time-dependent GinzburgLandau (TDGL) equation coupled to the appropriate Maxwell equation. The time derivatives are discretized using a second order semi-implicit scheme which, for intermediate values of the Ginzburg-Landau parameter κ, allows time-steps two orders of magnitude larger than commonly used in explicit schemes. We demonstrate the use of the method by solving a fully three-dimensional problem of a currentcarrying wire with longitudinal and transverse magnetic fields. c © ??? Academic Press
منابع مشابه
Applying a full implicit finite-difference method in jet impingement heat transfer studies
Jet impingement heat transfer is an effective and practical approach that is employed in many industrial processes where heating, cooling, or drying is required. Details of the heat or mass transfer rate have been investigated both experimentally and numerically and can be found in the published literature. In most of the numerical studies, control-volume approach has been employed to solve the...
متن کاملThe new implicit finite difference scheme for two-sided space-time fractional partial differential equation
Fractional order partial differential equations are generalizations of classical partial differential equations. Increasingly, these models are used in applications such as fluid flow, finance and others. In this paper we examine some practical numerical methods to solve a class of initial- boundary value fractional partial differential equations with variable coefficients on a finite domain. S...
متن کاملThe new implicit finite difference method for the solution of time fractional advection-dispersion equation
In this paper, a numerical solution of time fractional advection-dispersion equations are presented.The new implicit nite dierence methods for solving these equations are studied. We examinepractical numerical methods to solve a class of initial-boundary value fractional partial dierentialequations with variable coecients on a nite domain. Stability, consistency, and (therefore) convergenceof t...
متن کاملA semi-implicit finite-difference approach for two-dimensional coupled Burgers’ equations
In this paper, a semi-implicit finite-difference method is used to find the numerical solution of two-dimensional Coupled Burgers’ equation. The proposed scheme forms a system of linear algebraic difference equations to be solved at each time-step. The linear system is solved by direct method. Numerical results are compared with those of exact solutions and other available results. The present ...
متن کاملA semi-implicit augmented IIM for Navier-Stokes equations with open and traction boundary conditions
In this paper, a new Navier-Stokes solver based on a finite difference approximation is proposed to solve incompressible flows on irregular domains with open and traction boundary conditions, which can be applied to simulations of fluid structure interaction, implicit solvent model for biomolecular applications and other free boundary or interface problems. For this type of problem, the project...
متن کامل